Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.017
Filtrar
1.
Front Immunol ; 15: 1382661, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558797

RESUMO

Introduction: BTBD8 has been identified as a susceptible gene for inflammatory bowel diseases (IBD). However, the function of BTBD8 in normal development and IBD pathogenesis remains unknown. Methods: We administered drinking water with 3% dextran sodium sulfate (DSS) to wild-type (WT) and Btbd8 knockout (KO) mice for seven consecutive days to induce IBD. Subsequently, we further examined whether Btbd8 KO affects intestinal barrier and inflammation. Results: We demonstrated that Btbd8 deficiency partially protects mice from DSS-induced IBD, even though no obvious phenotypes were observed in Btbd8 KO mice. Btbd8 deletion leads to strengthened tight junctions between intestinal epithelial cells, elevated intestinal stem cell activity, and enhanced mucus layer. All these three mechanisms work together to improve the intestinal barrier integrity in Btbd8 KO mice. In addition, Btbd8 deficiency mitigates inflammation by reducing the expression of IL-1ß and IL-6 by macrophages. Discussion: Our studies validate the crucial role of Btbd8 in IBD pathogenesis, and reveal that Btbd8 deficiency may ameliorate DSS-induced IBD through improving the intestinal barrier integrity, as well as suppressing inflammatory response mediated by macrophages. These findings suggest that Btbd8 could be a promising therapeutic target for the treatment of IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Animais , Camundongos , 60435 , Colite/induzido quimicamente , Colite/genética , Colite/tratamento farmacológico , Inflamação/genética , Inflamação/patologia , Intestinos/patologia , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/patologia
2.
World J Gastroenterol ; 30(9): 1132-1142, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38577176

RESUMO

BACKGROUND: Melanocortin 3 and 5 receptors (i.e., MC3R and MC5R) belong to the melanocortin family. However, data regarding their role in inflammatory bowel diseases (IBD) are currently unavailable. AIM: This study aims to ascertain their expression profiles in the colonic mucosa of Crohn's disease (CD) and ulcerative colitis (UC), aligning them with IBD disease endoscopic and histologic activity. METHODS: Colonic mucosal biopsies from CD/UC patients were sampled, and immunohistochemical analyses were conducted to evaluate the expression of MC3R and MC5R. Colonic sampling was performed on both traits with endoscopic scores (Mayo endoscopic score and CD endoscopic index of severity) consistent with inflamed mucosa and not consistent with disease activity (i.e., normal appearing mucosa). RESULTS: In both CD and UC inflamed mucosa, MC3R (CD: + 7.7 fold vs normal mucosa, P < 0.01; UC: + 12 fold vs normal mucosa, P < 0.01) and MC5R (CD: + 5.5 fold vs normal mucosa, P < 0.01; UC: + 8.1 fold vs normal mucosa, P < 0.01) were significantly more expressed compared to normal mucosa. CONCLUSION: MC3R and MC5R are expressed in the colon of IBD patients. Furthermore, expression may differ according to disease endoscopic activity, with a higher degree of expression in the traits affected by disease activity in both CD and UC, suggesting a potential use of these receptors in IBD pharmacology.


Assuntos
Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Humanos , Doenças Inflamatórias Intestinais/patologia , Colite Ulcerativa/patologia , Doença de Crohn/patologia , Mucosa Intestinal/patologia
3.
BMC Gastroenterol ; 24(1): 135, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622545

RESUMO

BACKGROUND: Inflammatory bowel disease (IBD) is a chronic relapsing inflammatory disorder of the gastrointestinal tract (GIT).It results in progressive intestinal epithelium structural and functional damage that necessitates lifetime medication.Thereis imbalance in the production of T helper 1 (Th1), Th2 and Th17 cytokines. This plays a crucial role in the chronic inflammatory process and the defective immune response to pathogenic agents; thus promoting the recurrence of the disease.Our aim of this study was to detect serum IL-17 levels in IBD patients and its relation with disease activity. METHODS: This was a single center case control study, conducted at hepatology and gastroenterology unit, Mansoura specialized Medical Hospital, Egypt.Patients who were included were aged 18-65 years, diagnosed either Ulcerative Colitis (UC)or Crohn's Disease (CD) based on previous colonoscopy.IBD activity was measured for UC using the MAYO score and CD using the CD activity index (CDAI). Fifty five patients were UC, 24 patients were CD, 21 patients were control.Patients who were excluded were under 15 years old, with history of GIT malignancy, or any serious comorbidities. Study protocol was approved by Institution Research Board (IRB) of Mansoura Medical College.All patients were subjected to full history taking, routine physical examination, colonoscopy and laboratory investigations including serum IL-17 levels by ELISA besides CBC, CRP, ESR and fecal calprotectin. RESULTS: Serum IL-17 level was increased significantly among UC; median (min-max) = 72(21-502)pg/ml, in CD 54.5(25-260) versus control 19 (14-35), P < 0.001.However, it was not correlated to the disease activity either Mayo score of UC or CDAI of CD.There was significant correlation to the extent of inflammation in UC affecting the colon (either proctosigmoiditis, left sided colitis or pan colitis), also to the type of CD (either inflammatory, stricturing or fistulizing) by P < 0.05.It was not correlated significantly with any of the IBD activity markers (CRP, ESR, or fecal calprotectin).Yet there was negative significant correlation with Hb level (r =-0.28, p = 0.005).There was not significant association between median serum level of IL-17 & duration of disease (P = 0.6).However, median IL-17 was higher among hospitalized cases than non-hospitalized (73 & 55, pg/ml respectively; p < 0.002). AUC was significantly differentiating between IBD and control group = 0.993 with the best-detected cut off point from curve 32 pg/ml yielding sensitivity of 97.5% and specificity of 95.2%. CONCLUSION: Serum IL-17 increases in colonic inflammation significantly more than in control group, however its increase is not correlated to IBD activity.


Assuntos
Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Humanos , Adolescente , Interleucina-17 , Estudos de Casos e Controles , Biomarcadores , Doenças Inflamatórias Intestinais/patologia , Colite Ulcerativa/patologia , Doença de Crohn/patologia , Inflamação , Complexo Antígeno L1 Leucocitário/análise
4.
Nat Commun ; 15(1): 3080, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594251

RESUMO

Epithelial barrier dysfunction and crypt destruction are hallmarks of inflammatory bowel disease (IBD). Intestinal stem cells (ISCs) residing in the crypts play a crucial role in the continuous self-renewal and rapid recovery of intestinal epithelial cells (IECs). However, how ISCs are dysregulated in IBD remains poorly understood. Here, we observe reduced DHX9 protein levels in IBD patients, and mice with conditional DHX9 depletion in the intestinal epithelium (Dhx9ΔIEC) exhibit an increased susceptibility to experimental colitis. Notably, Dhx9ΔIEC mice display a significant reduction in the numbers of ISCs and Paneth cells. Further investigation using ISC-specific or Paneth cell-specific Dhx9-deficient mice demonstrates the involvement of ISC-expressed DHX9 in maintaining epithelial homeostasis. Mechanistically, DHX9 deficiency leads to abnormal R-loop accumulation, resulting in genomic instability and the cGAS-STING-mediated inflammatory response, which together impair ISC function and contribute to the pathogenesis of IBD. Collectively, our findings highlight R-loop-mediated genomic instability in ISCs as a risk factor in IBD.


Assuntos
Doenças Inflamatórias Intestinais , Estruturas R-Loop , Animais , Humanos , Camundongos , RNA Helicases DEAD-box/metabolismo , Células Epiteliais/metabolismo , Homeostase , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/metabolismo , Proteínas de Neoplasias/metabolismo , Celulas de Paneth/metabolismo , Células-Tronco/metabolismo
5.
Sci Rep ; 14(1): 6335, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491049

RESUMO

Inflammatory bowel disease (IBD) pathogenesis involves complex inflammatory events and cell death. Although IBD involves mainly necrosis in the digestive tract, pyroptosis has also been recognized. Nonetheless, the underlying basis is elusive. Gα12/13 overexpression may affect endoplasmic reticulum (ER) stress. This study examined how Gα12/13 and ER stress affect pyroptosis using dextran sulfate sodium (DSS)-induced colitis models. Gα12/13 levels were increased in the distal and proximal colons of mice exposed to a single cycle of DSS, as accompanied by increases of IRE1α, ATF6, and p-PERK. Moreover, Il-6, Il-1ß, Ym1, and Arg1 mRNA levels were increased with caspase-1 and IL-1ß activation, supportive of pyroptosis. In the distal colon, RIPK1/3 levels were enhanced to a greater degree, confirming necroptosis. By contrast, the mice subjected to three cycles of DSS treatments showed decreases of Gα12/13, as accompanied by IRE1α and ATF6 suppression, but increases of RIPK1/3 and c-Cas3. AZ2 treatment, which inhibited Gα12, has an anti-pyroptotic effect against a single cycle of colitis. These results show that a single cycle of DSS-induced colitis may cause ER stress-induced pyroptosis as mediated by Gα12 overexpression in addition to necroptosis, but three cycles model induces only necroptosis, and that AZ2 may have an anti-pyroptotic effect.


Assuntos
Colite , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP , Animais , Camundongos , Colite/metabolismo , Colite/patologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático , Endorribonucleases/genética , Endorribonucleases/metabolismo , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Piroptose
6.
J Pediatr Gastroenterol Nutr ; 78(3): 653-661, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38504407

RESUMO

OBJECTIVES: Inflammatory bowel disease (IBD), eosinophilic gastrointestinal disease (EGID), and functional abdominal pain disorder (FAPD) present with nonspecific gastrointestinal (GI) symptoms clinically and also have some similarities in pathogeneses associated with eosinophils. Therefore, we aimed to evaluate the role of eosinophils in IBD compared to EGID and FAPD by investigating eosinophils in peripheral blood and GI tissue and eosinophil cationic protein (ECP). METHODS: Pediatric patients with chronic GI symptoms who underwent endoscopic biopsies were enrolled. Complete blood cell counts, inflammatory markers, immunoglobulin E (IgE), serum ECP levels, and endoscopic and histopathologic findings were retrospectively reviewed. RESULTS: A total of 387 patients were included: 179 with EGID, 107 with IBDs, and 82 with FAPD. Peripheral absolute eosinophil count (AEC), total IgE, and serum ECP were significantly higher in both IBD and EGID than in FAPD (all p < 0.05). Statistically significant differences were noted among the three groups in tissue eosinophil counts in each segment of GI tract except for the esophagus (p < 0.05). Significant differences were observed in tissue eosinophil counts in the ascending, sigmoid colon, and rectum between EGID and IBD (p < 0.05). Peripheral and tissue eosinophils in the stomach and duodenum revealed positive correlation in both EGID and IBD (both p < 0.001). CONCLUSION: Elevated eosinophil-related markers, as well as increased tissue eosinophilic infiltration in the affected areas of the GI tract in both IBD and EGID compared to FAPD, suggest that eosinophils might play a common important role in the pathogeneses of both diseases.


Assuntos
Enterite , Eosinofilia , Eosinófilos , Gastrite , Doenças Inflamatórias Intestinais , Humanos , Criança , Eosinófilos/patologia , Proteína Catiônica de Eosinófilo , Estudos Retrospectivos , Doenças Inflamatórias Intestinais/patologia , Imunoglobulina E , Contagem de Leucócitos
7.
Gut Microbes ; 16(1): 2329147, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38528729

RESUMO

BACKGROUND: Inflammatory bowel disease (IBD) is characterized by immune-mediated, chronic inflammation of the intestinal tract. The occurrence of IBD is driven by the complex interactions of multiple factors. The objective of this study was to evaluate the therapeutic effects of IAA in colitis. METHOD: C57/BL6 mice were administered 2.5% DSS in drinking water to induce colitis. IAA, Bifidobacterium pseudolongum, and R-equol were administered by oral gavage and fed a regular diet. The Disease Activity Index was used to evaluate disease activity. The degree of colitis was evaluated using histological morphology, RNA, and inflammation marker proteins. CD45+ CD4+ FOXP3+ Treg and CD45+ CD4+ IL17A+ Th17 cells were detected by flow cytometry. Analysis of the gut microbiome in fecal content was performed using 16S rRNA gene sequencing. Gut microbiome metabolites were analyzed using Untargeted Metabolomics. RESULT: In our study, we found IAA alleviates DSS-induced colitis in mice by altering the gut microbiome. The abundance of Bifidobacterium pseudolongum significantly increased in the IAA treatment group. Bifidobacterium pseudolongum ATCC25526 alleviates DSS-induced colitis by increasing the ratio of Foxp3+T cells in colon tissue. R-equol alleviates DSS-induced colitis by increasing Foxp3+T cells, which may be the mechanism by which ATCC25526 alleviates DSS-induced colitis in mice. CONCLUSION: Our study demonstrates that IAA, an indole derivative, alleviates DSS-induced colitis by promoting the production of Equol from Bifidobacterium pseudolongum, which provides new insights into gut homeostasis regulated by indole metabolites other than the classic AHR pathway.


Assuntos
Bifidobacterium , Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Camundongos , Animais , Equol/metabolismo , Equol/farmacologia , Equol/uso terapêutico , RNA Ribossômico 16S/genética , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Ácidos Indolacéticos/metabolismo , Doenças Inflamatórias Intestinais/patologia , Inflamação/patologia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/farmacologia , Sulfato de Dextrana/toxicidade , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Colo/metabolismo
8.
Int J Mol Sci ; 25(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38542183

RESUMO

Inflammatory bowel conditions can involve nearly all organ systems and induce pathological processes through increased oxidative stress, lipid peroxidation and disruption of the immune response. Patients with inflammatory bowel disease (IBD) are at high risk of having extra-intestinal manifestations, for example, in the hepatobiliary system. In 30% of patients with IBD, the blood values of liver enzymes, such as AST and ALT, are increased. Moreover, treatments for inflammatory bowel diseases may cause liver toxicity. Apple polyphenol extracts are widely acknowledged for their potential antioxidant effects, which help prevent damage from oxidative stress, reduce inflammation, provide protection to the liver, and enhance lipid metabolism. The aim of this study was to investigate whether the polyphenol apple extract from Malus domestica cv. 'Limoncella' (LAPE) may be an effective intervention for the treatment of IBD-induced hepatotoxicity. The LAPE was administrated in vivo by oral gavage (3-300 mg/kg) once a day for 3 consecutive days, starting 24 h after the induction of dinitro-benzenesulfonic acid (DNBS) colitis in mice. The results showed that LAPE significantly attenuated histological bowel injury, myeloperoxidase activity, tumor necrosis factor and interleukin (IL-1ß) expressions. Furthermore, LAPE significantly improved the serum lipid peroxidation and liver injury in DNBS-induced colitis, as well as reduced the nuclear transcription factor-kappaB activation. In conclusion, these results suggest that LAPE, through its antioxidant and anti-inflammatory properties, could prevent liver damage induced by inflammatory bowel disease.


Assuntos
Benzenossulfonatos , Colite , Dinitrofluorbenzeno/análogos & derivados , Doenças Inflamatórias Intestinais , Humanos , Camundongos , Animais , Dinitrobenzenos , Polifenóis/efeitos adversos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Doenças Inflamatórias Intestinais/patologia , Antioxidantes/efeitos adversos , Fígado/metabolismo
9.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542269

RESUMO

Inflammatory bowel diseases are extremely common throughout the world. However, in most cases, it is asymptomatic at the initial stage. Therefore, it is important to develop non-invasive diagnostic methods that allow identification of the IBD risks in a timely manner. It is well known that gastrointestinal microbiota secrete volatile compounds (VOCs) and their composition may change in IBD. We propose a non-invasive method to identify the dynamics of IBD development in the acute and remission stage at the level of VOCs in model of dextran sulfate sodium (DSS) with chemically induced colitis measured by headspace GC/MS (HS GC/MS). Methods: VOCs profile was identified using a headspace GC/MS (HS GC/MS). GC/MS data were processed using MetaboAnalyst 5.0 and GraphPad Prism 8.0.1 software. The disease activity index (DAI) and histological method were used to assess intestinal inflammation. The peak of intestinal inflammation activity was reached on day 7, according to the disease activity index. Histological examination data showed changes in the intestine due to different stages of inflammation. As the acute inflammation stage was reached, the metabolomic profile also underwent changes, especially at the short-fatty acids level. A higher relative amounts of acetic acid (p value < 0.025) and lower relative amounts of propanoic acid (p value < 0.0005), butanoic acid (p value < 0.005) and phenol 4-methyl- (p value = 0.053) were observed in DSS7 group on day 7 compared to the control group. In remission stage, disease activity indexes decreased, and the histological picture also improved. But metabolome changes continued despite the withdrawal of the DSS examination. A lower relative amounts of propanoic acid (p value < 0.025), butanoic acid (p value < 0.0005), pentanoic acid (p value < 0.0005), and a significant de-crease of hexanoic acid (p value < 0.0005) relative amounts were observed in the DSS14 group compared to the control group on day 14. A model of DSS-induced colitis in rats was successfully implemented for metabolomic assessment of different stages of inflammation. We demonstrated that the ratios of volatile compounds change in response to DSS before the appearance of standard signs of inflammation, determined by DAI and histological examination. Changes in the volatile metabolome persisted even after visual intestine repair and it confirms the high sensitivity of the microbiota to the damaging effects of DSS. The use of HS GC/MS may be an important addition to existing methods for assessing inflammation at early stages.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Ratos , Animais , Camundongos , Propionatos/efeitos adversos , Cromatografia Gasosa-Espectrometria de Massas , Modelos Animais de Doenças , Colite/induzido quimicamente , Colite/diagnóstico , Colite/patologia , Inflamação/patologia , Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/patologia , Butiratos/efeitos adversos , Sulfato de Dextrana/efeitos adversos , Camundongos Endogâmicos C57BL , Colo/patologia
10.
Front Immunol ; 15: 1307297, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510236

RESUMO

Background: Primary sclerosing cholangitis (PSC) is a chronic liver disease marked by inflammation of the bile ducts and results in the development of strictures and fibrosis. A robust clinical correlation exists between PSC and inflammatory bowel disease (IBD). At present, published data are controversial, and it is yet unclear whether IBD drives or attenuates PSC. Methods: Mdr2-deficient mice or DDC-fed mice were used as experimental models for sclerosing cholangitis. Additionally, colitis was induced in mice with experimental sclerosing cholangitis, either through infection with Citrobacter rodentium or by feeding with DSS. Lastly, fibrosis levels were determined through FibroScan analysis in people with PSC and PSC-IBD. Results: Using two distinct experimental models of colitis and two models of sclerosing cholangitis, we found that colitis does not aggravate liver pathology, but rather reduces liver inflammation and liver fibrosis. Likewise, people with PSC-IBD have decreased liver fibrosis compared to those with PSC alone. Conclusions: We found evidence that intestinal inflammation attenuates liver pathology. This study serves as a basis for further research on the pathogenesis of PSC and PSC-IBD, as well as the molecular mechanism responsible for the protective effect of IBD on PSC development. This study could lead to the discovery of novel therapeutic targets for PSC.


Assuntos
Colangite Esclerosante , Colite , Doenças Inflamatórias Intestinais , Humanos , Animais , Camundongos , Colangite Esclerosante/tratamento farmacológico , Doenças Inflamatórias Intestinais/patologia , Inflamação , Cirrose Hepática/patologia
12.
PLoS One ; 19(3): e0299687, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512973

RESUMO

Phytotherapy is an attractive strategy to treat inflammatory bowel disease (IBD) that could be especially useful in developing countries. We previously demonstrated the intestinal anti-inflammatory effect of the total ethereal extract from the Physalis peruviana (Cape gooseberry) calyces in TNBS-induced colitis. This work investigates the therapeutic potential of Peruviose A and B, two sucrose esters that constitute the major metabolites of its calyces. The effect of the Peruvioses A and B mixture on TNBS-induced colitis was studied after 3 (preventive) and 15-days (therapy set-up) of colitis induction in rats. Colonic inflammation was assessed by measuring macroscopic/histologic damage, MPO activity, and biochemical changes. Additionally, LPS-stimulated RAW 264.7 macrophages were treated with test compounds to determine the effect on cytokine imbalance in these cells. Peruvioses mixture ameliorated TNBS-induced colitis in acute (preventive) or established (therapeutic) settings. Although 3-day treatment with compounds did not produce a potent effect, it was sufficient to significantly reduce the extent/severity of tissue damage and the microscopic disturbances. Beneficial effects in the therapy set-up were substantially higher and involved the inhibition of pro-inflammatory enzymes (iNOS, COX-2), cytokines (TNF-α, IL-1ß, and IL-6), as well as epithelial regeneration with restoration of goblet cells numbers and expression of MUC-2 and TFF-3. Consistently, LPS-induced RAW 264.7 cells produced less NO, PGE2, TNF-α, IL-6, and MCP-1. These effects might be related to the inhibition of the NF-κB signaling pathway. Our results suggest that sucrose esters from P. peruviana calyces, non-edible waste from fruit production, might be useful as an alternative IBD treatment.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Physalis , Ribes , Ratos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Ésteres/metabolismo , Sacarose/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Citocinas/metabolismo , Colo/patologia , Doenças Inflamatórias Intestinais/patologia , Ácido Trinitrobenzenossulfônico/toxicidade
13.
Neurogastroenterol Motil ; 36(5): e14780, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38462652

RESUMO

BACKGROUND: Different studies have shown the key role of endoplasmic reticulum (ER) stress in autoimmune and chronic inflammatory disorders, as well as in neurodegenerative diseases. ER stress leads to the formation of misfolded proteins which affect the secretion of different cell types that are crucial for the intestinal homeostasis. PURPOSE: In this review, we discuss the role of ER stress and its involvement in the development of inflammatory bowel diseases, chronic conditions that can cause severe damage of the gastrointestinal tract, focusing on the alteration of Paneth cells and goblet cells (the principal secretory phenotypes of the intestinal epithelial cells). ER stress is also discussed in the context of neurodegenerative diseases, in which protein misfolding represents the signature mechanism. ER stress in the bowel and consequent accumulation of misfolded proteins might represent a bridge between bowel inflammation and neurodegeneration along the gut-to-brain axis, affecting intestinal epithelial homeostasis and the equilibrium of the commensal microbiota. Targeting intestinal ER stress could foster future studies for designing new biomarkers and new therapeutic approaches for neurodegenerative disorders.


Assuntos
Estresse do Retículo Endoplasmático , Doenças Neurodegenerativas , Estresse do Retículo Endoplasmático/fisiologia , Humanos , Doenças Neurodegenerativas/metabolismo , Animais , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Celulas de Paneth/metabolismo , Inflamação/metabolismo
14.
Gut Microbes ; 16(1): 2333463, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38545880

RESUMO

The ectopic gut colonization by orally derived pathobionts has been implicated in the pathogenesis of various gastrointestinal diseases, including inflammatory bowel disease (IBD). For example, gut colonization by orally derived Klebsiella spp. has been linked to IBD in mice and humans. However, the mechanisms whereby oral pathobionts colonize extra-oral niches, such as the gut mucosa, remain largely unknown. Here, we performed a high-density transposon (Tn) screening to identify genes required for the adaptation of an oral Klebsiella strain to different mucosal sites - the oral and gut mucosae - at the steady state and during inflammation. We find that K. aerogenes, an oral pathobiont associated with both oral and gut inflammation in mice, harbors a newly identified genomic locus named "locus of colonization in the inflamed gut (LIG)" that encodes genes related to iron acquisition (Sit and Chu) and host adhesion (chaperon usher pili [CUP] system). The LIG locus is highly conserved among K. aerogenes strains, and these genes are also present in several other Klebsiella species. The Tn screening revealed that the LIG locus is required for the adaptation of K. aerogenes in its ectopic niche. In particular, we determined K. aerogenes employs a CUP system (CUP1) present in the LIG locus for colonization in the inflamed gut, but not in the oral mucosa. Thus, oral pathobionts likely exploit distinct adaptation mechanisms in their ectopically colonized intestinal niche compared to their native niche.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Humanos , Animais , Camundongos , Klebsiella/genética , Doenças Inflamatórias Intestinais/patologia , Inflamação , Mucosa Bucal
15.
Nat Commun ; 15(1): 2083, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453952

RESUMO

Purinergic signaling plays a causal role in the pathogenesis of inflammatory bowel disease. Among purinoceptors, only P2Y14R is positively correlated with inflammatory score in mucosal biopsies of ulcerative colitis patients, nevertheless, the role of P2Y14R in ulcerative colitis remains unclear. Here, based on the over-expressions of P2Y14R in the intestinal epithelium of mice with experimental colitis, we find that male mice lacking P2Y14R in intestinal epithelial cells exhibit less intestinal injury induced by dextran sulfate sodium. Mechanistically, P2Y14R deletion limits the transcriptional activity of cAMP-response element binding protein through cAMP/PKA axis, which binds to the promoter of Ripk1, inhibiting necroptosis of intestinal epithelial cells. Furthermore, we design a hierarchical strategy combining virtual screening and chemical optimization to develop a P2Y14R antagonist HDL-16, which exhibits remarkable anti-colitis effects. Summarily, our study elucidates a previously unknown mechanism whereby P2Y14R participates in ulcerative colitis, providing a promising therapeutic target for inflammatory bowel disease.


Assuntos
Colite Ulcerativa , Colite , Doenças Inflamatórias Intestinais , Humanos , Masculino , Animais , Camundongos , Colite Ulcerativa/patologia , Necroptose , Colite/patologia , Células Epiteliais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/metabolismo , Sulfato de Dextrana/toxicidade , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Colo/patologia , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
16.
Cell Commun Signal ; 22(1): 176, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475799

RESUMO

BACKGROUND: The impact of antidepressants on Inflammatory bowel diseases (IBD) has been extensively studied. However, the biological effects and molecular mechanisms of antidepressants in alleviating colitis remain unclear. METHODS: We systematically assessed how antidepressants (fluoxetine, fluvoxamine and venlafaxine) affected IBD and chose fluoxetine, the most effective one, for mechanism studies. We treated the C56BL/6 mice of the IBD model with fluoxetine and their controls. We initially assessed the severity of intestinal inflammation in mice by body weight loss, disease Activity Index scores and the length of the colon. The H&E staining and immunohistochemical staining of MUC2 of colon sections were performed to observe the pathological changes. RT-qPCR and western blot were conducted to assess the expression level of the barrier and inflammation-associated genes. Then, single-cell RNA sequencing was performed on mouse intestinal mucosa. Seurat was used to visualize the data. Uniform Manifold Approximation and Projection (UMAP) was used to perform the dimensionality reduction. Cell Chat package was used to perform cell-cell communication analysis. Monocle was used to conduct developmental pseudotime analysis. Last, RT-qPCR, western blot and immunofluorescence staining were conducted to test the phenomenon discovered by single-cell RNA sequencing in vitro. RESULTS: We found that fluoxetine treatment significantly alleviated colon inflammation. Notably, single-cell RNA sequencing analysis revealed that fluoxetine affected the distribution of different cell clusters, cell-cell communication and KEGG pathway enrichment. Under the treatment of fluoxetine, enterocytes, Goblet cells and stem cells became the dominating cells. The pseudotime analysis showed that there was a trend for M1 macrophages to differentiate into M2 macrophages. Lastly, we tested this phenomenon in vitro, which exhibited anti-inflammatory effects on enterocytes. CONCLUSIONS: Fluoxetine exhibited anti-inflammatory effects on intestinal mucosa via remodeling of the intestinal cells and macrophages, which reveals that fluoxetine is a promising therapeutic drug for the treatment of IBD and psychiatric comorbidities.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Animais , Camundongos , Fluoxetina/metabolismo , Fluoxetina/farmacologia , Fluoxetina/uso terapêutico , Citocinas/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Antidepressivos/metabolismo , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Anti-Inflamatórios/farmacologia , Camundongos Endogâmicos C57BL
17.
Inflamm Res ; 73(4): 541-562, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38345635

RESUMO

BACKGROUND: Inflammatory bowel disease (IBD) is an increasingly prevalent global health concern that has garnered substantial attention. However, the underlying mechanisms are still unclear and the current treatments have significant limitations. Intestinal organoids provide an in vitro model to explore the pathogenesis, test the therapeutic effects, and develop regenerative treatments as well as offer the potential to transform drug discovery of IBD. METHODS: To advance our understanding of the whole story of IBD spanning from the pathogenesis to the current therapeutic strategies and latest advancements, a comprehensive search of major databases including PubMed, Scopus, and Web of Science was conducted to retrieve original articles and reviews related to IBD, organoids, pathogenesis and therapy. RESULTS: This review deciphers the etiopathogenesis and the current therapeutic approaches in the treatment of IBD. Notably, critical aspects of intestinal organoids in IBD, such as their potential applications, viability, cell renewal ability, and barrier functionality are highlighted. We also discuss the advances, limitations, and prospects of intestinal organoids for precision medicine. CONCLUSION: The latest strides made in research about intestinal organoids help elucidate intricate aspects of IBD pathogenesis, and pave the prospective avenues for novel therapeutic interventions.


Assuntos
Doenças Inflamatórias Intestinais , Humanos , Estudos Prospectivos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/patologia , Intestinos/patologia , Organoides/patologia
18.
Cytokine ; 176: 156537, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38325140

RESUMO

OBJECTIVE: Inflammatory bowel disease (IBD) is listed by the World Health Organization as one of the modern intractable diseases. High mobility histone box 1 (HMGB1), originally described as a non-histone nucleoprotein involved in transcriptional regulation, was later identified as a pro-inflammatory cytokine that may contribute to the pathogenesis of inflammatory diseases such as IBD. Neutrophil extracellular traps (NETs) play an important role in the pathophysiology of IBD The aim of this study was to investigate the role of HMGB1 in experimental colitis mice and its potential mechanisms of action. METHODS: We first constructed the experimental colitis mouse model. Intervention of mice by rhHMGB1 supplementation or HMGB1 inhibition. The pathological morphology of the colon was observed using HE staining. Apoptosis of colonic tissue intestinal epithelial cells was evaluated using Tunel assay. The expression of HMGB1, ZO-1 and occludin in colon tissue was detected by immunohistochemistry, ELISA and western-blot. We also assessed the effects of HMGB1 on colonic injury, NETs content, macrophage polarization and inflammatory cells in mice. The regulatory effect of HMGB1 inhibition on NETs was assessed by combining DNase I. RESULTS: Inhibition of HMGB1 significantly reduced the inflammatory model in experimental colitis mice, as evidenced by reduced body weight, increased colonic length, reduced DAI scores and apoptosis, reduced inflammatory response, and improved colonic histopathological morphology and intestinal mucosal barrier function. Meanwhile, inhibition of HMGB1 was able to reduce the expression of CD86, citH3 and MPO and increase the expression of CD206 in the colonic tissue of mice. In addition, DNase I intervention was also able to improve colonic inflammation in mice. And the best effect was observed when DNase I and inhibition of HMGB1 were intervened together. CONCLUSION: Inhibition of HMGB1 ameliorates IBD by mediating NETs and macrophage polarization.


Assuntos
Colite , Armadilhas Extracelulares , Proteína HMGB1 , Doenças Inflamatórias Intestinais , Animais , Camundongos , Proteína HMGB1/metabolismo , Armadilhas Extracelulares/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Doenças Inflamatórias Intestinais/patologia , Modelos Animais de Doenças , Macrófagos/metabolismo , Desoxirribonuclease I , Camundongos Endogâmicos C57BL , Sulfato de Dextrana
19.
Neuropathol Appl Neurobiol ; 50(1): e12962, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38343067

RESUMO

AIMS: According to Braak's hypothesis, it is plausible that Parkinson's disease (PD) originates in the enteric nervous system (ENS) and spreads to the brain through the vagus nerve. In this work, we studied whether inflammatory bowel diseases (IBDs) in humans can progress with the emergence of pathogenic α-synuclein (α-syn) in the gastrointestinal tract and midbrain dopaminergic neurons. METHODS: We have analysed the gut and the ventral midbrain from subjects previously diagnosed with IBD and form a DSS-based rat model of gut inflammation in terms of α-syn pathology. RESULTS: Our data support the existence of pathogenic α-syn in both the gut and the brain, thus reinforcing the potential role of the ENS as a contributing factor in PD aetiology. Additionally, we have analysed the effect of a DSS-based rat model of gut inflammation to demonstrate (i) the appearance of P-α-syn inclusions in both Auerbach's and Meissner's plexuses (gut), (ii) an increase in α-syn expression in the ventral mesencephalon (brain) and (iii) the degeneration of nigral dopaminergic neurons, which all are considered classical hallmarks in PD. CONCLUSION: These results strongly support the plausibility of Braak's hypothesis and emphasise the significance of peripheral inflammation and the gut-brain axis in initiating α-syn aggregation and transport to the substantia nigra, resulting in neurodegeneration.


Assuntos
Doenças Inflamatórias Intestinais , Doença de Parkinson , Humanos , Ratos , Animais , alfa-Sinucleína/metabolismo , Doença de Parkinson/patologia , Encéfalo/patologia , Inflamação/patologia , Neurônios Dopaminérgicos/metabolismo , Doenças Inflamatórias Intestinais/patologia
20.
Mult Scler Relat Disord ; 84: 105493, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354444

RESUMO

BACKGROUND: Previous epidemiologic studies have suggested a linkage between the occurrence of multiple sclerosis (MS), Hodgkin lymphoma (HL), Crohn's disease (CD), and ulcerative colitis (UC). It was hypothesized that the 4 diagnoses would be characterized by similar geographic distributions within the United States. AIMS: To compare the US geographic distributions of these 4 diagnoses in a cross-sectional study. METHODS: Using the US vital statistics, state-specific death rates and age-specific proportional mortality ratios (PMR) were calculated for each diagnosis. Similarities in the geographic distributions of the 4 diagnoses were tested by linear and Poisson regression analyses. The PMR values from different states were correlated among pairs of consecutive age-groups. RESULTS: The 6 linear correlation coefficients (r) among the geographic distributions of the 4 diseases were as follows: HL vs. MS (r = 0.28), HL vs. CD (r = 0.74), HL vs. UC (r = 0.64); MS vs. CD (r = 0.18), MS vs. UC (r = 0.66); CD vs. UC (r = 0.58). Using Poisson regression, the geographic distributions of MS, HL, CD, and UC were all found to be significantly correlated with each other. In MS, significant correlations between the PMR values of each two consecutive age-groups started with the age-group 25-44 years. In HL, such significant correlations started at age 10-14, in CD at age 20-24, and in UC at age 20-24 years. CONCLUSIONS: Within the United States, mortality from MS, HL, CD, and UC are characterized by similar geographic distributions. The environmental influences responsible for these resembling geographic distributions start exerting their influence during early lifetime.


Assuntos
Colite Ulcerativa , Doença de Crohn , Doença de Hodgkin , Doenças Inflamatórias Intestinais , Esclerose Múltipla , Humanos , Estados Unidos/epidemiologia , Criança , Adolescente , Adulto Jovem , Adulto , Esclerose Múltipla/epidemiologia , Doença de Hodgkin/epidemiologia , Estudos Transversais , Doenças Inflamatórias Intestinais/epidemiologia , Doenças Inflamatórias Intestinais/patologia , Colite Ulcerativa/patologia , Doença de Crohn/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...